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Trust the Proxy
We live in a world where identity happens in a second. A face 
scan unlocks a phone, a selfie clears KYC, and a camera 
confirms who’s on the other side.

Deepfakes don’t break these flows with noise. They slip in 
quietly as a perfect proxy at the exact moment trust is 
assumed and decisions move fast. When they succeed, the 
failure is silent. It passes in real time. It’s discovered only after 
loss, escalation, or regulatory scrutiny.

This paper challenges the confidence industry's place in 
benchmark-led deepfake detection. High scores on controlled 
datasets do not mean real protection in live systems.

The real world is hostile to detectors. Media gets compressed, 
re-encoded, downsampled, and captured under inconsistent 
lighting, bandwidth, and device conditions. And those 
conditions destroy the very signals many detectors rely on. 
What looks “state-of-the-art” in a lab can become fragile in 
production.
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55.5%
Average accuracy of 
humans detecting 
deepfakes.1

56papers
Evidence base 
covering 86,155 
participants.2

15%
People report 
exposure to harmful 
deepfakes.3

50.2%
Celebrities are the 
most common 
deepfake targets.4

The Problem with Industry’s Deepfake 
Detection Claims
Most detection claims sound stronger than they are because 
models are trained and tested on controlled datasets, and the 
results are presented in a generalized context to real identity 
workflows.

Real-world verification looks far different. In practice, it's 
compressed, re-encoded, and captured on inconsistent 
devices in imperfect conditions. However, the question isn’t 
whether a detector can identify manipulation, but whether it 
survives platform processing and an attacker optimized for 
one decisive moment.

This gap is why benchmarks are being questioned and why 
scenario-specific evaluation is becoming necessary. The VCF5 
benchmark is one example of this shift, using video 
conferencing as a representative high-trust setting. Its 
approach could also be tested against scenarios such as 
remote onboarding and live identity checks, where even minor 
variations in capture conditions may influence detection 
performance.

1 https://www.sciencedirect.com/science/article/pii/S2451958824001714
2 https://www.sciencedirect.com/science/article/pii/S2451958824001714
3 https://www.turing.ac.uk/news/publications/behind-deepfake-8-create-90-concerned
4 https://www.turing.ac.uk/news/publications/behind-deepfake-8-create-90-concerned
5 https://isprs-archives.copernicus.org/articles/XLVIII-2-W9-2025/169/2025/
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The Arms Race of Deepfake Detection
Deepfake detection often fails as the threat evolves in 
response to detection systems with improved generation 
techniques that adapt to avoid the cues those systems learn to 
recognize. This dynamic turns protection into an ongoing 
contest rather than a one-time capability.

Regulators and risk bodies increasingly describe deepfakes as 
an arms race. For instance, Australia’s eSafety6 Commissioner 
has compared staying ahead of deepfake abuse to “fighting an 
arms race,” while the World Economic Forum7 highlights an 
asymmetric dynamic in which advances in generation often 
outpace detection. The implication is consistent. Static 
controls and fixed models degrade over time because 
deepfakes behave like a moving target.

03

6 “Fighting the deepfakes arms race | eSafety Commissioner,” eSafety Commissioner, Oct. 11, 2019. https://
www.esafety.gov.au/newsroom/blogs/fighting-deepfakes-arms-race
7  B. Colman, “Detecting dangerous AI is essential in the deepfake era,” World Economic Forum, Jul. 07, 
2025. https://www.weforum.org/stories/2025/07/why-detecting-dangerous-ai-is-key-to-keeping-trust-alive/ 
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Understanding the Line Between 
Creation and Impersonation
Synthetic media and deepfakes are often created using the 
same underlying AI models. That is why they are frequently 
talked about as if they are the same thing. The difference is not 
the technology. It is what the media is doing and how it is 
used.

The same camera can take a family photo or a forged 
document. The tool is the same, except for the risk.

| What does ”synthetic media” mean?

Synthetic media, as described in UNESCO’s policy 
primer, refers to digital content, including images, 
audio, and video, that is created or modified using 
artificial intelligence and related technologies. It 
encompasses both benign and malicious uses of AI-
generated content and forms the broader category 
within which deepfakes exist.8

Synthetic media refers to any image, video, or audio that is 
created or altered using AI, regardless of intent. This includes 
content such as AI-generated faces or voices that do not 
represent a real person, virtual avatars used for presentations, 
text-to-speech systems, automated dubbing or translation, 
and media created for marketing, training, entertainment, or 
accessibility.

Think of it like this

8 https://unesdoc.unesco.org/ark:/48223/pf0000392181
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9 https://www.europol.europa.eu/publications-events/publications/facing-reality-law-enforcement-and-
challenge-of-deepfakes
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In most cases, synthetic media is not designed to deceive and 
does not involve identity at all. It is simply a method of content 
creation or enhancement, widely used across legitimate digital 
applications.

At that point, the media is no longer just synthetic. It is acting 
as a proxy for a real identity.

| What makes something a deepfake?

Deepfakes, according to Europol’s law-enforcement 
reporting, are a form of synthetic media that can be 
used to impersonate real individuals in ways that 
may deceive people or systems and facilitate 
criminal activity.9

Examples:
A synthetic face used to pass identity verification

A cloned voice used to authorise a payment

A generated video used to impersonate someone in a live call

https://www.europol.europa.eu/publications-events/publications/facing-reality-law-enforcement-and-challenge-of-deepfakes
https://www.europol.europa.eu/publications-events/publications/facing-reality-law-enforcement-and-challenge-of-deepfakes
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Traditional Morph Attacks Labelled as 
Deepfake
Morphing is one example to illustrate a common form of 
impersonation that is often mistaken for deepfakes, even 
though it relies on real media or simple manipulation rather 
than synthetic generation.

Morphing is not always a deepfake. Traditional morphs rely on 
image manipulation, while AI-generated morphs use face 
synthesis and therefore qualify as deepfakes.

Victim

Fraudster

Morphed

Image

UNITED KINGDOM ID

SURNAME

Allison

McFarlane
GIVEN NAMES

SEX

CITIZENSHIP

DATE OF 
BIRTH

PERSONAL 
CODE

Date of Issue

DATE OF EXPIRY

HOLDER'S SIGNATURE

Allie

F
By Adoption
1-04-1988

E5462373

E5462373

24.03.2029

IDENTITY CARD
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The examples described above refer to traditional morph 
attacks created through image manipulation such as blending, 
warping, retouching, pixel averaging, and landmark alignment. 
AI-generated morphs exist as well, but they differ in 
appearance and are classified as deepfakes.

At that point, the media is no longer just synthetic. It is acting 
as a proxy for a real identity.

It’s well-documented in identity fraud

It has appeared in passport and ID document attacks

It produces convincing results without AI generation

| What traditional morphs look like and 
are considered deepfakes:

But the real question is:

Can detection models built for photo-edited 
morphs reliably identify morphs that are generated 
using AI?
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Types of Deepfake and Synthetic 
Media Used in Identity Spoofing
In remote identity verification (IDV) and onboarding, deepfake-
enabled fraud tends to concentrate into four dominant forms, 
such as face swaps, voice cloning, lip-sync/face reenactment, 
and synthetic face generation, each of which undermines trust 
in a different part of the onboarding pipeline.

1. Face-swap deepfakes

Threat intensity: Very high 

A face-swap deepfake replaces one person’s face with 
another in an image or video while preserving lighting, 
pose, and context.

3. Lip-sync and face reenactment deepfakes

Threat intensity: Very high 

Lip-sync and face reenactment manipulate facial 
motion so a subject appears to speak specific words 
or display expressions never performed.

2. Voice cloning/audio deepfakes

Threat intensity: High 

Voice cloning generates speech that imitates a 
specific person’s vocal characteristics from limited 
audio samples.

4. Synthetic face generation

Threat intensity: High 

Synthetic face generation creates photorealistic faces 
that do not correspond to real individuals.
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While these threat scenarios differ in intent and 
execution, a key question remains: can deepfake 
detectors trained on specific generators reliably 
detect deepfakes across these threat scenarios?

There are multiple threat scenarios involving deepfakes, and 
the risks vary depending on the attacker’s goal, the delivery 
channel, and the trust context in which the media is used. 
Common scenarios include:

Deepfakes as disinformation weapons

Live deepfake impersonation and executive fraud in Video 
Meeting

Non-consensual deepfakes and reputation attacks

Photo ID morphing via deepfake face swaps to bypass identity 
checks

Deepfakes as an organised crime enabler

Deepfake spoofing attacks on facial biometrics

Different Threat Scenarios Involving 
Deepfakes
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Compression artefacts are not deepfakes, but they can affect 
deepfake detection performance. Many detection methods 
rely on fine-grained visual patterns in images and video, such 
as texture detail, edge consistency, and noise characteristics. 
These patterns can be altered or removed when media quality 
decreases due to compression or repeated re-encoding.

Why Compression Artefacts Are a 
Core Challenge for Deepfake 
Detection

Codec-based (JPEG DCT, 

WebP, HEVC)

Blurriness

Pixelation

Block artifacts

AI models (GANs, 

autoencoders, diffusion)

Unnatural facial 

expressions

Inconsistent 

lighting/shadows

Warped eyes, lips, or face 

edges

Deepfake ArtifactsCompression Artifacts
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In identity and onboarding workflows, media is often 
compressed or reprocessed during capture, upload, 
transmission, and storage. The moment it reaches a detection 
system, some visual detail may already be reduced or 
distorted, which can make forensic cues harder to measure 
consistently and may contribute to both false positives and 
false negatives, depending on the model, thresholds, and 
capture conditions.

Fine facial detail: Natural skin texture and micro-variation

Over-smoothing can mimic artificial skin texture

Edge ringing can resemble poorly blended edits

Texture loss removes the natural “real camera” signature

Blockiness and banding can look like generated image 
artefacts

Clean transitions: Consistent edges around eyes, lips, and 
hairlines
Natural noise: Patterns that come from real camera sensors
Frame-to-frame stability: How details behave across video 
frames

| What do deepfake detectors typically 
depend on?

| Compression alters these same cues 
in ways that can resemble synthetic 
media:
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| The Critical Breakpoint of Models

| This breakpoint often leads to two 
predictable results:

Once compression crosses a threshold, the model isn’t really 
spotting manipulation anymore. It’s making a call based on 
media that’s already been degraded. Compression disrupts 
the exact signals the model depends on.

Model Needs

Fine Texture

Natural noise

Clean edges

Temporal stability

What Compression Does

Removes it

Replaces it with block noise

Introduces ringing and aliasing

Creates flicker and inconsistency

Over-Blocking (False 
Positives)

Real users flagged as 
deepfakes

More retries, manual 
review, and abandonment

Trust and conversion 
drop

Under-Blocking (False 
Negatives)

Thresholds relaxed to 
protect UX

Sophisticated attacks 
pass by hiding signals in 
low-quality

Fraud enters the system 
and is discovered later
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Why Existing Deepfake Detection 
Approaches Fall Short in Real-World 
Threat Scenarios

Lin et al. – “Fit for 
Purpose? Deepfake 
Detection in the Real 
World” (Purdue)10

Dataset Used: PDID (Political Deepfakes Incident Database), a 
dataset of real political deepfakes from social media.

Key Findings: Deepfake detectors that benchmark well in 
controlled datasets often underperform on real-world political 
deepfakes shared on social platforms.

Dataset Limitations: Narrow scope limited to the US (political 
content), heavy compression, not necessarily representative 
of KYC / biometric environments.

Yermakov et al. – 
“Deepfake Detection 
that Generalizes 
Across 
Benchmarks”11

Dataset Used: 13–14 public benchmarks incl. FF++ / DFDC / 
Celeb-DF / KoDF / CDFv3.

Key Findings: Cross-dataset training with a CLIP-based model 
improves generalisation, but performance still varies widely 
across datasets.

Dataset Limitations: Benchmarks are mostly lab-style and 
synthetic; limited real-world onboarding/spoofing scenarios. 
The model’s performance against targeted adversarial attacks 
specifically designed to evade detection has not been 
evaluated. It also ignores temporal dynamics that could offer 
additional cues (e.g., lip-sync inconsistencies or frame-level 
motion artefacts).

10  G. Lin, L. Lin, C. P. Walker, D. S. Schiff, and S. Hu, “Fit for Purpose? Deepfake Detection in the Real World,” 
arXiv.org, 2025. https://arxiv.org/abs/2510.16556
11  A. Yermakov, J. Cech, J. Matas, and M. Fritz, “Deepfake Detection that Generalizes Across Benchmarks,” 
arXiv.org, 2025. https://arxiv.org/abs/2508.06248

https://arxiv.org/abs/2510.16556
https://arxiv.org/abs/2508.06248
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Zhao et al. – 
“DeepfakeBench-
MM: A 
Comprehensive 
Benchmark for 
Multimodal 
Deepfake 
Detection”12

Dataset Used: Mega-MMDF + FakeAVCeleb + LAV-DF + AV-
Deepfake-1M + IDForge.

Key Findings: Provides a unified audio+video benchmark; 
evaluates 11 detectors and shows uneven robustness across 
datasets and forgery types.

Dataset Limitations: Experimental results show strong dataset 
and forgery-type dependence (no detector is consistently best 
across all sets or pipelines). Multimodal models often rely 
mainly on visual cues, with limited true audio–visual synergy. 
Cross-dataset generalisation gaps and pipeline-specific 
artifact bias remain, so good results on one dataset or forgery 
family do not guarantee broad robustness.

Khan et al. – 
“DeepFake 
Detection: 
Evaluating the 
Performance of 
EfficientNetV2-B2 on 
Real vs Fake Image 
Classification”13

Dataset Used: Custom 100,000-image dataset (50k real / 50k 
deepfake faces).

Key Findings: EfficientNetV2-B2 reaches ≈99.9% accuracy and 
F1 on the same-distribution test split.

Dataset Limitations: Single controlled dataset with  unknown 
generalisation to new generators, platforms, or KYC-style 
captures.

Alrashoud – 
“Deepfake Video 
Detection: Methods 
& Challenges” 
(Survey)14

Dataset Used: Reviews major datasets such as FF++, DFDC, 
Celeb-DF.

Key Findings: Finds detection accuracy drops with 
compression and lower-quality footage.

Dataset Limitations: Existing datasets do not fully reflect real-
world capture and spoofing conditions.

12  K. Zhao et al., “DeepfakeBench-MM: A Comprehensive Benchmark for Multimodal Deepfake Detection,” 
arXiv.org, 2025. https://arxiv.org/abs/2510.22622 (accessed Jan. 02, 2026).
13  S. B. Khan et al., “DeepFake Detection: Evaluating the Performance of EfficientNetV2‐B2 on Real vs. Fake 
Image Classification,” IET Image Processing, vol. 19, no. 1, Jan. 2025, doi: https://doi.org/10.1049/ipr2.70152.
14  M. Alrashoud, “Deepfake video detection methods, approaches, and challenges,” Alexandria 
Engineering Journal, vol. 125, pp. 265–277, Jun. 2025, doi: https://doi.org/10.1016/j.aej.2025.04.007.

https://arxiv.org/abs/2510.22622
https://doi.org/10.1049/ipr2.70152
https://doi.org/10.1016/j.aej.2025.04.007
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Why Vendor Accuracy Numbers 
without Context Are Misleading
Vendors report deepfake detection performance using 
different datasets, generators, capture conditions, and 
decision thresholds, so headline percentages may refer to 
scenarios that are either not applicable to remote identity 
proofing or limited to a few deepfake generation engines.  In 
many cases, the datasets used and the operating point used to 
measure FAR/FRR-type outcomes are not disclosed, which 
makes independent comparison difficult.

Additionally, some metrics are reported for off-site detection 
on limited generator sets or framed around iBeta Level 2-style 
certification contexts, neither of which consistently represents 
real-world accuracy for detecting deepfakes for threat 
scenarios like injection attacks during remote onboarding. 
Where datasets are disclosed, they often reflect limited 
generator coverage, which may not generalize to newer or 
more diverse deepfake methods.



4.4%

APCER @ 1% BPCER 
(Minimum rejected 

attempts)

1.7%

Both APCER and 

BPCER (Equal 
error rate)

2.3%

BPCER @ 1% APCER 
(Minimum accepted 

frauds)

Vendor 1

99.98% 99%

91.07%

Image

77.27%

Video

Vendor 3Vendor 2 Vendor 4

Limitation: Benchmarking 
methodology and 
performance under 
production-like attack 
conditions not disclosed.

Deepfake detection 
claimed on first 
attempt 
 — Vendor 1

Limitation: Results are 
benchmark- and dataset-
specific and depend on 
decision thresholds.

Deepfake detection 
accuracy reported in 
Purdue PDID results 
 — Vendor 3

Limitation: Performance 
measured against a single 
deepfake generator and 
may not generalize across 
broader deepfake attack 
methods.

*Claims referenced are based on publicly available information 
and have not been independently verified by Shufti.

Detection rate for 
DeepFaceLive-
generated deepfakes 
 — Vendor 2

Limitation: Reports error 
rates rather than accuracy; 
comparability depends on 
threat models and 
capture/injection controls.

17

Operational error rates 
across defined 
operating points 
 — Vendor 4
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Why Deepfake Detection Breaks 
Outside the Lab
A core limitation in deepfake detection research is 
generalizability: performance achieved on controlled 
benchmarks often fails to transfer to real-world conditions. 
Most detectors are trained and tested on synthetic datasets 
that do not reflect how deepfakes appear in practice, where 
content is compressed, re-encoded, streamed through 
platform codecs, captured on inconsistent devices, and 
shaped by environmental noise. Under these conditions, the 
signals many detectors rely on are weakened or distorted, 
which can cause significant accuracy degradation.

Because deepfake generation and evasion techniques evolve 
rapidly, robust detection requires scenario-based evaluation 
and multi-signal (multi-model) systems rather than relying on a 
single detector trained to recognize a fixed set of artefacts.

This gap shifts the real question from

to

“How accurate is the model on a benchmark?”

“Does it hold up in the attack scenarios and capture 
channels that matter?”

Generalizability and 
Domain Shift
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Third-Party PDID Evaluation
Deepfake detection claims often come with gaps. Datasets are 
frequently undisclosed, test conditions can be overly 
controlled, and certifications are sometimes treated as full 
real-world proof even though they only validate a narrow 
scope (for example, iBeta Level 2 or liveness-style protocols). 
That creates a “half-truth” problem where models look strong 
in the lab but degrade on real platform media that is 
compressed, reposted, or screen-recorded.

The study benchmarks several commercial deepfake 
detectors, including Incode (DeepSight), Reality Defender, 
Hive Moderation, AI or Not, Is It AI, Winston, BrandWell, 
Illuminarty, and Deepfake Detector, and reports both accuracy 
and false acceptance rates, with Incode (DeepSight) achieving 
a False Accept Rate of 2.56%.

The study “Fit for Purpose? Deepfake Detection in 
the Real World,” which benchmarked a range of 
academic, public-sector, and commercial systems 
using the Political Deepfakes Incident Database 
(PDID), made up of real political deepfakes 
circulated on platforms like X/Twitter, YouTube, 
TikTok, and Instagram. Because the testing was 
conducted under a third-party protocol and 
reported comparatively, while the testing has been 
conducted under a third-party protocol and 
reported comparatively, the study doesn’t 
demonstrate generalizability for real-world threat 
scenarios such as remote identity spoofing.

For Example:



98.28%
Cheapfake Detection Accuracy

99.63%
Deepfake Detection Accuracy

99.54%
Shufti’s Accuracy


at 0.46% FAR

Shufti’s PDID Stress Test Results



www.shufti.com

21

It is important to distinguish third-party comparative 
benchmarking from how PDID can be used as a robustness 
stress dataset. Shufti’s PDID figures are included here not as a 
benchmark victory claim and not as a substitute for scenario 
testing in identity workflows. Instead, PDID is used as an in-
the-wild stress environment to test how Shufti’s multi-model 
pipeline performs under realistic degradation (compression, 
re-encoding, platform noise) that commonly breaks 
benchmark-trained detectors.

Apart from PDID data, Shufti’s evaluation does not 
stop with a single dataset. The system is 
continuously updated and tested against outputs 
from deepfake generation engines and against real-
world threat scenarios relevant to identity 
workflows, including injection-style attacks in live 
onboarding flows.

How Shufti Uses It DifferentlyPDID as a Robustness 
Stress Test
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Why Single-Model Deepfake 
Detection Fails in Real Pipelines
Deepfake detection is often presented as a clean, single-
model problem. In practice, research and real deployments 
show that no single detector stays reliable across changing 
generators, channels, and capture conditions.

Compression cues can help in one pipeline but weaken in 
another. Re-encoding, transcoding, and heavy compression 
can alter or replace the very features a detector relies on, 
causing performance to drop outside its original workflow.

Spatial and frequency-based signals can be informative in 
ideal media. In production capture, low resolution, poor 
lighting, motion blur, latency, and post-processing can mask 
or distort these patterns, reducing real-world consistency.

Quantization analysis and camera fingerprints (e.g., PRNU) also 
have constraints. Editing, recompression, denoising, 
stabilization, cropping, or resizing can change or suppress the 
signals needed for these methods to work.

Because each signal family can degrade under routine 
handling, relying on any one method creates a structural 
weakness. A multi-model approach cross-checks independent 
cues (compression, spatial/frequency, quantization, and 
camera fingerprints) to produce more resilient detection 
decisions.
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Shufti’s Multi-Model Detection 
Strategy
Shufti’s deepfake detection is implemented as a multi-model 
pipeline, combining multiple independent detection signals 
rather than relying on a single model or feature. This reduces 
sensitivity to real-world factors such as compression, capture 
variability, and evolving generation techniques, where any 
single signal can degrade or fail. 

Shufti continuously improves this pipeline through scenario-
based testing, observed failure patterns, and iterative updates 
to models and decision thresholds so performance stays 
reliable as media conditions and attack methods change.

A
ccuracy

FA
R

Initial Pipeline 88.0%

97.33%

11.2%

2.66%

Initial Pipeline

Improved Pipeline

Improved Pipeline
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Shufti puts this multi-model approach into practice through a 
structured forensic evaluation flow. Instead of relying on one 
model to make a single-pass decision, the system checks 
several independent signals that are known to fail under real-
world conditions such as compression, re-encoding, low-
quality capture, and post-processing. Any one signal can 
weaken on its own, but when multiple signals point to the 
same outcome, the risk assessment becomes far more 
reliable.

Original Image Original Image 
Pattern

Original Overlay

Deepfake Image Deepfake Image 
Pattern

Deepfake Overlay
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The Design Rationale Behind the 
Seven Gates of Shufti
Shufti’s thinking behind the Seven Gates is straightforward: 
deepfakes don’t sneak in through a hidden back door. They 
come through the same front door as real users, using normal 
capture flows and media that look authentic. The real 
challenge is not just spotting synthetic content but keeping 
decisions reliable when the input appears clean, passes 
through legitimate pipelines, and is intentionally engineered to 
survive verification checks. That risk increases as new-
generation engines appear that did not exist in yesterday’s 
training data.

The Seven Gates are not seven rigid detectors. Seven 
evidence domains reflect the main independent ways 
authenticity breaks in the real world, including:

Using fewer than seven creates predictable blind spots 
because it skips entire classes of evidence. Using more than 
seven often adds overlap, increasing complexity and tuning 
risk without meaningfully improving resilience.

Biometric structure

Generator artefacts

Compression history

Frequency behaviour

Texture realism

Robustness under degradation

Pixel-level coherence
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The Seven Gates Forensic Evaluation 
Framework
The Seven Gates translates Shufti’s multi-model architecture 
into a sequential forensic evaluation framework. Each gate 
tests a different hypothesis about authenticity, and deepfake 
risk emerges only when multiple independent signals align.
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Gate One | The Biometric Detective
This gate tests whether the face follows real human structure 
and motion. It checks geometry and consistency across 
movement and expression, looking for subtle distortions that 
often appear when synthetic faces try to stay coherent over 
time.
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Gate Two | The AI Signature Hunter
This gate looks for statistical traces left by generative systems. 
It does not depend on a visible watermark. It evaluates 
whether the media behaves more like model output than 
camera capture, using patterns that are difficult to remove 
without degrading the content.
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Gate Three | The Digital Archaeologist
This gate examines the processing history of the media. It 
looks for inconsistencies in compression and re-encoding that 
suggest parts of the image or video have been handled 
differently, which is common when manipulated regions are 
edited and then cleaned up.
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Gate Four | The Frequency Analyst
This gate moves beyond visual appearance and checks 
frequency space. It looks for spectral patterns that real 
sensors and lenses produce naturally and that generators 
often smooth out or reproduce incorrectly, especially when 
the content has been edited or heavily processed.
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Gate Five | The Texture Specialist
This gate evaluates whether fine detail behaves like real skin 
and real surfaces. It focuses on micro variation, irregularity, 
and natural transitions such as hairlines and edges, where 
synthetic media often become too uniform, repetitive, or 
averaged.
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Gate Six | The Degradation Expert
This gate is designed for low-quality conditions that attackers 
often exploit. It tests what remains measurable when 
resolution drops, blur increases, noise is added, or lighting is 
poor, and it looks for anomalies that persist when clarity 
collapses.
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Gate Seven | The Pixel Inspector
This gate examines high-resolution coherence. It checks pixel-
level continuity and local reconstruction patterns that can 
reveal how an image was assembled, catching subtle 
discontinuities that only emerge when detail is high and there 
is less room for synthetic shortcuts.
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Keeping Detection Aligned With 
Evolving Threats
Industry-wide, deepfake detection is still constrained by 
limited and fragmented datasets. In addition, many solutions 
are built around off-site capabilities or broad checks rather 
than real-world threat scenarios.

These standalone detection models often remain tied to a 
specific environment, pipeline, or data collection method. 
Therefore, it becomes impractical to generalize solutions 
across industries, geographies, or use cases.

These standalone detection models often remain tied to a 
specific environment, pipeline, or data collection method. 
Therefore, it becomes impractical to generalize solutions 
across industries, geographies, or use cases. 

In contrast, Shufti’s deepfake detection solution is being 
trained to address the diversity of manipulation techniques. 
Shufti uses:

A multi-model strategy because no single model is 
enough to detect the full range and intensity of 
modern deepfakes. At the same time, these models 
are continuously trained and updated using new 
data and evolving threat scenarios, ensuring 
alignment with real adversarial behaviour rather 
than static or outdated patterns.
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A current limitation is that synthetic media created 
using newly introduced generation models may 
differ from the data used to train earlier detection 
systems. Nevertheless, Shufti’s R&D team prioritizes 
continuous monitoring of emerging fraud 
typologies and actively retrain models on content 
produced by these newer generators.

To ensure detection remains aligned with real-world threat 
scenarios, Shufti’s approach:
Deepfake detection aligned with real-world threats through a 
structured audit and feedback loop with stakeholders.
Findings are shared across teams to continuously refine 
training, thresholds, and policies as new deepfake typologies 
emerge.
Building the deepfake defense is treated as a threat-specific 
challenge rather than a fraud problem.



Deploy Deepfake Detection Inside Your 
AWS Environment
Deepfakes can slip through legacy checks and hide inside 
historic KYC records. Shufti’s Deepfake Blindspot Audit runs as a 
secure AWS AMI in your own cloud, keeping biometric data 
within your security perimeter while scanning for manipulation 
and generative AI signals.

Audit historic KYC at scale, flag genuine vs. synthetic identities, 
and strengthen compliance without moving data off-prem.

These standalone detection models often remain tied to a 
specific environment, pipeline, or data collection method. 
Therefore, it becomes impractical to generalize solutions across 
industries, geographies, or use cases. 

Start Your AWS Deepfake

Blindspot Audit with Shufti

https://shuftipro.com/blind-spot-audit/deepfake-detection/

