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Your Face Is Not Yours

Someone Can Be You
Without Being You



www.shufti.com

Trust the Proxy

We live in a world where identity happens in a second. A face
scan unlocks a phone, a selfie clears KYC, and a camera
confirms who's on the other side.

Deepfakes don’t break these flows with noise. They slip in
quietly as a perfect proxy at the exact moment trust is
assumed and decisions move fast. When they succeed, the
failure is silent. It passes in real time. It's discovered only after
loss, escalation, or regulatory scrutiny.

This paper challenges the confidence industry's place in
benchmark-led deepfake detection. High scores on controlled
datasets do not mean real protection in live systems.

The real world is hostile to detectors. Media gets compressed,
re-encoded, downsampled, and captured under inconsistent
lighting, bandwidth, and device conditions. And those
conditions destroy the very signals many detectors rely on.
What looks “state-of-the-art” in a lab can become fragile in
production.
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The Problem with Industry’s Deepfake
Detection Claims

Most detection claims sound stronger than they are because
models are trained and tested on controlled datasets, and the
results are presented in a generalized context to real identity
workflows.

Real-world verification looks far different. In practice, it's
compressed, re-encoded, and captured on inconsistent
devices in imperfect conditions. However, the question isn’t
whether a detector can identify manipulation, but whether it
survives platform processing and an attacker optimized for
one decisive moment.

This gap is why benchmarks are being questioned and why
scenario-specific evaluation is becoming necessary. The VCF®
benchmark is one example of this shift, using video
conferencing as a representative high-trust setting. Its
approach could also be tested against scenarios such as
remote onboarding and live identity checks, where even minor
variations in capture conditions may influence detection
performance.

1 https://www.sciencedirect.com/science/article/pii/S2451958824001714

2 https://www.sciencedirect.com/science/article/pii/S2451958824001714

3 https://www.turing.ac.uk/news/publications/behind-deepfake-8-create-90-concerned
4 https://www.turing.ac.uk/news/publications/behind-deepfake-8-create-90-concerned
5 https://isprs-archives.copernicus.org/articles/XLVIII-2-W9-2025/169/2025/
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https://www.sciencedirect.com/science/article/pii/S2451958824001714
https://www.turing.ac.uk/news/publications/behind-deepfake-8-create-90-concerned
https://www.turing.ac.uk/news/publications/behind-deepfake-8-create-90-concerned
https://isprs-archives.copernicus.org/articles/XLVIII-2-W9-2025/169/2025/
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The Arms Race of Deepfake Detection

Deepfake detection often fails as the threat evolves in
response to detection systems with improved generation
techniques that adapt to avoid the cues those systems learn to
recognize. This dynamic turns protection into an ongoing
contest rather than a one-time capability.

Regulators and risk bodies increasingly describe deepfakes as
an arms race. For instance, Australia’s eSafety® Commissioner
has compared staying ahead of deepfake abuse to “fighting an
arms race,” while the World Economic Forum?’ highlights an
asymmetric dynamic in which advances in generation often
outpace detection. The implication is consistent. Static
controls and fixed models degrade over time because
deepfakes behave like a moving target.

5 “Fighting the deepfakes arms race | eSafety Commissioner,” eSafety Commissioner, Oct. 11, 2019. https://
www.esafety.gov.au/newsroom/blogs/fighting-deepfakes-arms-race

7 B. Colman, “Detecting dangerous Al is essential in the deepfake era,” World Economic Forum, Jul. 07,
2025. https://www.weforum.org/stories/2025/07/why-detecting-dangerous-ai-is-key-to-keeping-trust-alive/



https://www.esafety.gov.au/newsroom/blogs/fighting-deepfakes-arms-race
https://www.esafety.gov.au/newsroom/blogs/fighting-deepfakes-arms-race
https://www.weforum.org/stories/2025/07/why-detecting-dangerous-ai-is-key-to-keeping-trust-alive/

Think of it like this
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Understanding the Line Between
Creation and Impersonation

Synthetic media and deepfakes are often created using the
same underlying Al models. That is why they are frequently
talked about as if they are the same thing. The difference is not
the technology. It is what the media is doing and how it is
used.

The same camera can take a family photo or a forged
document. The tool is the same, except for the risk.

| What does “synthetic media” mean?

Synthetic media, as described in UNESCQO's policy
primer, refers to digital content, including images,
audio, and video, that is created or modified using
artificial intelligence and related technologies. It
encompasses both benign and malicious uses of Al-
generated content and forms the broader category
within which deepfakes exist.?

Synthetic media refers to any image, video, or audio that is
created or altered using Al, regardless of intent. This includes
content such as Al-generated faces or voices that do not
represent a real person, virtual avatars used for presentations,
text-to-speech systems, automated dubbing or translation,
and media created for marketing, training, entertainment, or
accessibility.

8 https://unesdoc.unesco.org/ark:/48223/pf0000392181
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In most cases, synthetic media is not designed to deceive and
does not involve identity at all. It is simply a method of content
creation or enhancement, widely used across legitimate digital
applications.

| What makes something a deepfake?

Deepfakes, according to Europol’s law-enforcement
reporting, are a form of synthetic media that can be
used to impersonate real individuals in ways that
may deceive people or systems and facilitate
criminal activity.®

Examples:
A synthetic face used to pass identity verification

A cloned voice used to authorise a payment
» A generated video used to impersonate someone in a live call

At that point, the media is no longer just synthetic. It is acting
as a proxy for a real identity.

® https://www.europol.europa.eu/publications-events/publications/facing-reality-law-enforcement-and-

challenge-of-deepfakes



https://www.europol.europa.eu/publications-events/publications/facing-reality-law-enforcement-and-challenge-of-deepfakes
https://www.europol.europa.eu/publications-events/publications/facing-reality-law-enforcement-and-challenge-of-deepfakes
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Traditional Morph Attacks Labelled as
Deepfake

Morphing is one example to illustrate a common form of
impersonation that is often mistaken for deepfakes, even
though it relies on real media or simple manipulation rather
than synthetic generation.
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Morphing is not always a deepfake. Traditional morphs rely on
image manipulation, while Al-generated morphs use face
synthesis and therefore qualify as deepfakes.
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| What traditional morphs look like and
are considered deepfakes:

It's well-documented in identity fraud
It has appeared in passport and ID document attacks
It produces convincing results without Al generation

At that point, the media is no longer just synthetic. It is acting
as a proxy for a real identity.

The examples described above refer to traditional morph
attacks created through image manipulation such as blending,
warping, retouching, pixel averaging, and landmark alignment.
Al-generated morphs exist as well, but they differ in
appearance and are classified as deepfakes.

But the real question is:

Can detection models built for photo-edited
morphs reliably identify morphs that are generated
using Al?



Types of Deepfake and Synthetic
Media Used in Identity Spoofing

In remote identity verification (IDV) and onboarding, deepfake-
enabled fraud tends to concentrate into four dominant forms,
such as face swaps, voice cloning, lip-sync/face reenactment,
and synthetic face generation, each of which undermines trust

Threat intensity: Very high

in a different part of the onboarding pipeline.

1. Face-swap deepfakes
Threat intensity: Very high

A face-swap deepfake replaces one person’s face with
another in an image or video while preserving lighting,
pose, and context.

2. Voice cloning/audio deepfakes
Threat intensity: High

Voice cloning generates speech that imitates a
specific person’s vocal characteristics from limited
audio samples.

3. Lip-sync and face reenactment deepfakes

Lip-sync and face reenactment manipulate facial
motion so a subject appears to speak specific words
or display expressions never performed.

4. Synthetic face generation

Threat intensity: High

Synthetic face generation creates photorealistic faces
that do not correspond to real individuals.
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Different Threat Scenarios Involving
Deepfakes

There are multiple threat scenarios involving deepfakes, and
the risks vary depending on the attacker’s goal, the delivery
channel, and the trust context in which the media is used.
Common scenarios include:

Deepfakes as disinformation weapons
Non-consensual deepfakes and reputation attacks

Deepfakes as an organised crime enabler
Live deepfake impersonation and executive fraud in Video

Meeting
Photo ID morphing via deepfake face swaps to bypass identity

checks
Deepfake spoofing attacks on facial biometrics

While these threat scenarios differ in intent and

execution, a key question remains: can deepfake
detectors trained on specific generators reliably
detect deepfakes across these threat scenarios?
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Why Compression Artefacts Are a
Core Challenge for Deepfake
Detection

Compression artefacts are not deepfakes, but they can affect
deepfake detection performance. Many detection methods
rely on fine-grained visual patterns in images and video, such
as texture detail, edge consistency, and noise characteristics.
These patterns can be altered or removed when media quality
decreases due to compression or repeated re-encoding.

Al models (GANs,

(e (AT autoencoders, diffusion)

WebP, HEVC)

Unnatural facial

Blurriness expressions

Block artifacts l ’ Warped eyes, lips, or face

edges

Compression Artifacts Deepfake Artifacts
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In identity and onboarding workflows, media is often
compressed or reprocessed during capture, upload,
transmission, and storage. The moment it reaches a detection
system, some visual detail may already be reduced or
distorted, which can make forensic cues harder to measure
consistently and may contribute to both false positives and
false negatives, depending on the model, thresholds, and
capture conditions.

| What do deepfake detectors typically
depend on?

Fine facial detail: Natural skin texture and micro-variation
Clean transitions: Consistent edges around eyes, lips, and
hairlines

Natural noise: Patterns that come from real camera sensors
Frame-to-frame stability: How details behave across video
frames

| Compression alters these same cues
in ways that can resemble synthetic
media:

Over-smoothing can mimic artificial skin texture
Blockiness and banding can look like generated image
artefacts

Edge ringing can resemble poorly blended edits

Texture loss removes the natural “real camera” signature



| The Critical Breakpoint of Models

Once compression crosses a threshold, the model isn’t really
spotting manipulation anymore. It's making a call based on
media that’s already been degraded. Compression disrupts
the exact signals the model depends on.

Model Needs What Compression Does

Fine Texture Removes it

Natural noise Replaces it with block noise
Clean edges Introduces ringing and aliasing
Temporal stability Creates flicker and inconsistency

| This breakpoint often leads to two
predictable results:

Over-Blocking (False Under-Blocking (False
Positives) Negatives)

Real users flagged as Thresholds relaxed to
deepfakes protect UX

More retries, manual Sophisticated attacks
review, and abandonment pass by hiding signals in
low-quality

Trust and conversion
drop Fraud enters the system
and is discovered later







Lin et al. - “Fit for
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World” (Purdue)’®

Yermakov et al. -
“Deepfake Detection
that Generalizes
Across
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Why Existing Deepfake Detection
Approaches Fall Short in Real-World
Threat Scenarios

Dataset Used: PDID (Political Deepfakes Incident Database), a
dataset of real political deepfakes from social media.

Key Findings: Deepfake detectors that benchmark well in
controlled datasets often underperform on real-world political
deepfakes shared on social platforms.

Dataset Limitations: Narrow scope limited to the US (political
content), heavy compression, not necessarily representative
of KYC / biometric environments.

Dataset Used: 13-14 public benchmarks incl. FF++ / DFDC /
Celeb-DF / KoDF / CDFv3.

Key Findings: Cross-dataset training with a CLIP-based model
improves generalisation, but performance still varies widely
across datasets.

Dataset Limitations: Benchmarks are mostly lab-style and
synthetic; limited real-world onboarding/spoofing scenarios.
The model’s performance against targeted adversarial attacks
specifically designed to evade detection has not been
evaluated. It also ignores temporal dynamics that could offer
additional cues (e.g., lip-sync inconsistencies or frame-level
motion artefacts).

10 G. Lin, L. Lin, C. P. Walker, D. S. Schiff, and S. Hu, “Fit for Purpose? Deepfake Detection in the Real World,”
arXiv.org, 2025. https://arxiv.org/abs/2510.16556

" A. Yermakov, J. Cech, J. Matas, and M. Fritz, “Deepfake Detection that Generalizes Across Benchmarks,”
arXiv.org, 2025. https://arxiv.org/abs/2508.06248



https://arxiv.org/abs/2510.16556
https://arxiv.org/abs/2508.06248

Zhao et al. -
“DeepfakeBench-
MM: A
Comprehensive
Benchmark for
Multimodal
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Detection”'?

Khan et al. -
“DeepFake
Detection:
Evaluating the
Performance of
EfficientNetV2-B2 on
Real vs Fake Image
Classification”'®

Alrashoud -
“Deepfake Video
Detection: Methods
& Challenges”
(Survey)™

www.shufti.com

Dataset Used: Mega-MMDF + FakeAVCeleb + LAV-DF + AV-
Deepfake-1M + IDForge.

Key Findings: Provides a unified audio+video benchmark;
evaluates 11 detectors and shows uneven robustness across
datasets and forgery types.

Dataset Limitations: Experimental results show strong dataset
and forgery-type dependence (no detector is consistently best
across all sets or pipelines). Multimodal models often rely
mainly on visual cues, with limited true audio-visual synergy.
Cross-dataset generalisation gaps and pipeline-specific
artifact bias remain, so good results on one dataset or forgery
family do not guarantee broad robustness.

Dataset Used: Custom 100,000-image dataset (50k real / 50k
deepfake faces).

Key Findings: EfficientNetV2-B2 reaches =99.9% accuracy and
F1 on the same-distribution test split.

Dataset Limitations: Single controlled dataset with unknown
generalisation to new generators, platforms, or KYC-style
captures.

Dataset Used: Reviews major datasets such as FF++, DFDC,
Celeb-DF.

Key Findings: Finds detection accuracy drops with
compression and lower-quality footage.

Dataset Limitations: Existing datasets do not fully reflect real-
world capture and spoofing conditions.

12 K. Zhao et al., “DeepfakeBench-MM: A Comprehensive Benchmark for Multimodal Deepfake Detection,”
arXiv.org, 2025. https://arxiv.org/abs/2510.22622 (accessed Jan. 02, 2026).

3 S. B. Khan et al., “DeepFake Detection: Evaluating the Performance of EfficientNetV2-B2 on Real vs. Fake
Image Classification,” IET Image Processing, vol. 19, no. 1, Jan. 2025, doi: https://doi.org/10.1049/ipr2.70152.
14 M. Alrashoud, “Deepfake video detection methods, approaches, and challenges,” Alexandria
Engineering Journal, vol. 125, pp. 265-277, Jun. 2025, doi: https://doi.org/10.1016/j.a€j.2025.04.007.
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Why Vendor Accuracy Numbers
Without Context Are Misleading

Vendors report deepfake detection performance using
different datasets, generators, capture conditions, and
decision thresholds, so headline percentages may refer to
scenarios that are either not applicable to remote identity
proofing or limited to a few deepfake generation engines. In
many cases, the datasets used and the operating point used to
measure FAR/FRR-type outcomes are not disclosed, which
makes independent comparison difficult.

Additionally, some metrics are reported for off-site detection
on limited generator sets or framed around iBeta Level 2-style
certification contexts, neither of which consistently represents
real-world accuracy for detecting deepfakes for threat
scenarios like injection attacks during remote onboarding.
Where datasets are disclosed, they often reflect limited
generator coverage, which may not generalize to newer or
more diverse deepfake methods.
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*Claims referenced are based on publicly available information
and have not been independently verified by Shufti.
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Generalizabilityand  \Why Deepfake Detection Breaks

Domain Shift

Outside the Lab

A core limitation in deepfake detection research is
generalizability: performance achieved on controlled
benchmarks often fails to transfer to real-world conditions.
Most detectors are trained and tested on synthetic datasets
that do not reflect how deepfakes appear in practice, where
content is compressed, re-encoded, streamed through
platform codecs, captured on inconsistent devices, and
shaped by environmental noise. Under these conditions, the
signals many detectors rely on are weakened or distorted,
which can cause significant accuracy degradation.

This gap shifts the real question from

“How accurate is the model on a benchmark?”

to

“Does it hold up in the attack scenarios and capture
channels that matter?”

Because deepfake generation and evasion techniques evolve
rapidly, robust detection requires scenario-based evaluation
and multi-signal (multi-model) systems rather than relying on a
single detector trained to recognize a fixed set of artefacts.
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Third-Party PDID Evaluation

Deepfake detection claims often come with gaps. Datasets are
frequently undisclosed, test conditions can be overly
controlled, and certifications are sometimes treated as full
real-world proof even though they only validate a narrow
scope (for example, iBeta Level 2 or liveness-style protocols).
That creates a “half-truth” problem where models look strong
in the lab but degrade on real platform media that is
compressed, reposted, or screen-recorded.

For Example:

The study “Fit for Purpose? Deepfake Detection in
the Real World,” which benchmarked a range of
academic, public-sector, and commercial systems
using the Political Deepfakes Incident Database
(PDID), made up of real political deepfakes
circulated on platforms like X/Twitter, YouTube,
TikTok, and Instagram. Because the testing was
conducted under a third-party protocol and
reported comparatively, while the testing has been
conducted under a third-party protocol and
reported comparatively, the study doesn’t
demonstrate generalizability for real-world threat
scenarios such as remote identity spoofing.

The study benchmarks several commercial deepfake
detectors, including Incode (DeepSight), Reality Defender,
Hive Moderation, Al or Not, Is It Al, Winston, BrandWell,
llluminarty, and Deepfake Detector, and reports both accuracy
and false acceptance rates, with Incode (DeepSight) achieving
a False Accept Rate of 2.56%.



Shufti’s PDID Stress Test Results

;. 98.28%
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99.63%

Deepfake Detection Accuracy
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PpiDasaRobustness  How Shufti Uses It Differently

Stress Test

It is important to distinguish third-party comparative
benchmarking from how PDID can be used as a robustness
stress dataset. Shufti’s PDID figures are included here not as a
benchmark victory claim and not as a substitute for scenario
testing in identity workflows. Instead, PDID is used as an in-
the-wild stress environment to test how Shufti’s multi-model
pipeline performs under realistic degradation (compression,
re-encoding, platform noise) that commonly breaks
benchmark-trained detectors.

Apart from PDID data, Shufti’s evaluation does not
stop with a single dataset. The system is
continuously updated and tested against outputs
from deepfake generation engines and against real-
world threat scenarios relevant to identity
workflows, including injection-style attacks in live
onboarding flows.
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Why Single-Model Deepfake
Detection Fails in Real Pipelines

Deepfake detection is often presented as a clean, single-
model problem. In practice, research and real deployments
show that no single detector stays reliable across changing
generators, channels, and capture conditions.

Compression cues can help in one pipeline but weaken in
another. Re-encoding, transcoding, and heavy compression
can alter or replace the very features a detector relies on,
causing performance to drop outside its original workflow.

Spatial and frequency-based signals can be informative in
ideal media. In production capture, low resolution, poor
lighting, motion blur, latency, and post-processing can mask
or distort these patterns, reducing real-world consistency.

Quantization analysis and camera fingerprints (e.g., PRNU) also
have constraints. Editing, recompression, denoising,
stabilization, cropping, or resizing can change or suppress the
signals needed for these methods to work.

Because each signal family can degrade under routine
handling, relying on any one method creates a structural
weakness. A multi-model approach cross-checks independent
cues (compression, spatial/frequency, quantization, and
camera fingerprints) to produce more resilient detection
decisions.
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Shufti’'s Multi-Model Detection
Strategy

Shufti’'s deepfake detection is implemented as a multi-model
pipeline, combining multiple independent detection signals
rather than relying on a single model or feature. This reduces
sensitivity to real-world factors such as compression, capture
variability, and evolving generation techniques, where any
single signal can degrade or fail.

Shufti continuously improves this pipeline through scenario-
based testing, observed failure patterns, and iterative updates
to models and decision thresholds so performance stays
reliable as media conditions and attack methods change.

88.0%

97.33%

11.2%

2.66%
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Shufti puts this multi-model approach into practice through a
structured forensic evaluation flow. Instead of relying on one
model to make a single-pass decision, the system checks
several independent signals that are known to fail under real-
world conditions such as compression, re-encoding, low-
quality capture, and post-processing. Any one signal can
weaken on its own, but when multiple signals point to the
same outcome, the risk assessment becomes far more
reliable.

Original Image Original Image Original Overlay
Pattern

Deepfake Image Deepfake Image Deepfake Overlay
Pattern
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The Design Rationale Behind the
Seven Gates of Shufti

Shufti’s thinking behind the Seven Gates is straightforward:
deepfakes don’t sneak in through a hidden back door. They
come through the same front door as real users, using normal
capture flows and media that look authentic. The real
challenge is not just spotting synthetic content but keeping
decisions reliable when the input appears clean, passes
through legitimate pipelines, and is intentionally engineered to
survive verification checks. That risk increases as new-
generation engines appear that did not exist in yesterday’s
training data.

The Seven Gates are not seven rigid detectors. Seven
evidence domains reflect the main independent ways
authenticity breaks in the real world, including:
Biometric structure

Generator artefacts
Compression history
Frequency behaviour

Texture realism

Robustness under degradation
Pixel-level coherence

Using fewer than seven creates predictable blind spots
because it skips entire classes of evidence. Using more than
seven often adds overlap, increasing complexity and tuning
risk without meaningfully improving resilience.



The Seven Gates Forensic Evaluation
Framework

The Seven Gates translates Shufti’'s multi-model architecture
into a sequential forensic evaluation framework. Each gate
tests a different hypothesis about authenticity, and deepfake
risk emerges only when multiple independent signals align.




Gate One
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| The Biometric Detective

This gate tests whether the face follows real human structure
and motion. It checks geometry and consistency across
movement and expression, looking for subtle distortions that
often appear when synthetic faces try to stay coherent over
time.



Gate Two
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| The Al Signature Hunter

This gate looks for statistical traces left by generative systems.
It does not depend on a visible watermark. It evaluates
whether the media behaves more like model output than
camera capture, using patterns that are difficult to remove
without degrading the content.



Gate Three
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| The Digital Archaeologist

This gate examines the processing history of the media. It
looks for inconsistencies in compression and re-encoding that
suggest parts of the image or video have been handled
differently, which is common when manipulated regions are
edited and then cleaned up.



Gate Four

| The Frequency Analyst

This gate moves beyond visual appearance and checks
frequency space. It looks for spectral patterns that real
sensors and lenses produce naturally and that generators
often smooth out or reproduce incorrectly, especially when
the content has been edited or heavily processed.



-

Gate Five
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-

| The Texture Specialist

This gate evaluates whether fine detail behaves like real skin
and real surfaces. It focuses on micro variation, irregularity,
and natural transitions such as hairlines and edges, where
synthetic media often become too uniform, repetitive, or
averaged.



Gate Six
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| The Degradation Expert

This gate is designed for low-quality conditions that attackers
often exploit. It tests what remains measurable when
resolution drops, blur increases, noise is added, or lighting is
poor, and it looks for anomalies that persist when clarity
collapses.



Gate Seven
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| The Pixel Inspector

This gate examines high-resolution coherence. It checks pixel-
level continuity and local reconstruction patterns that can
reveal how an image was assembled, catching subtle
discontinuities that only emerge when detail is high and there
is less room for synthetic shortcuts.
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Keeping Detection Aligned With
Evolving Threats

Industry-wide, deepfake detection is still constrained by
limited and fragmented datasets. In addition, many solutions
are built around off-site capabilities or broad checks rather
than real-world threat scenarios.

These standalone detection models often remain tied to a
specific environment, pipeline, or data collection method.
Therefore, it becomes impractical to generalize solutions
across industries, geographies, or use cases.

These standalone detection models often remain tied to a
specific environment, pipeline, or data collection method.
Therefore, it becomes impractical to generalize solutions
across industries, geographies, or use cases.

In contrast, Shufti's deepfake detection solution is being
trained to address the diversity of manipulation techniques.
Shufti uses:

A multi-model strategy because no single model is
enough to detect the full range and intensity of
modern deepfakes. At the same time, these models
are continuously trained and updated using new
data and evolving threat scenarios, ensuring
alignment with real adversarial behaviour rather
than static or outdated patterns.
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To ensure detection remains aligned with real-world threat
scenarios, Shufti's approach:

> Deepfake detection aligned with real-world threats through a
structured audit and feedback loop with stakeholders.

> Findings are shared across teams to continuously refine

training, thresholds, and policies as new deepfake typologies
emerge.

> Building the deepfake defense is treated as a threat-specific
challenge rather than a fraud problem.

A current limitation is that synthetic media created
using newly introduced generation models may
differ from the data used to train earlier detection
systems. Nevertheless, Shufti's R&D team prioritizes
continuous monitoring of emerging fraud
typologies and actively retrain models on content
produced by these newer generators.



O shufti

Deploy Deepfake Detection Inside Your

Deepfakes can slip through legacy checks and hide inside
historic KYC records. Shufti’s Deepfake Blindspot Audit runs as a
secure AWS AMI in your own cloud, keeping biometric data
within your security perimeter while scanning for manipulation
and generative Al signals.

Audit historic KYC at scale, flag genuine vs. synthetic identities,
and strengthen compliance without moving data off-prem.

These standalone detection models often remain tied to a
specific environment, pipeline, or data collection method.
Therefore, it becomes impractical to generalize solutions across
industries, geographies, or use cases.

Start Your AWS Deepfake

Blindspot Audit with Shufti



https://shuftipro.com/blind-spot-audit/deepfake-detection/

